Chapter 3
Design theory for Relational
Databases

Université Grenoble Alpes
09/03/2023

Bahareh Afshinpour

bahareh.afshinpour@univ-grenoble-alpes.fr

U C_A Main reference:
A A First Course in Database Systems (and associated material) by

Université J. Ullman and J. Widom, Prentice-Hall
Grenoble Alpes

Left outer join- Right outer join

There are many variants of the basic (natural) outerjoin idea. The left
outerjoin R oap S is like the outerjoin, but only dangling tuples of the left
argument R are padded with 1 and added to the result. The right outerjoin
Rag S is like the outerjoin, but only the dangling tuples of the right argument
S are padded with L and added to the result.

e lives(person-name,street,city)

Exa m p I es e works(person-name, company-name,salary)

e located-in(company-name,city)

e manages(person-name,manager-name)

For the above schema (the primary key for each relation is denoted by the underlined
attribute), provide relational algebra expressions for the following queries:

1. Find all tuples in works of all persons who work for the City Bank company (which is a
specific company in the database).

(&) J(cna*m.e:’(jity Bank') (’IUGTkS)

2. Find the name of persons working at City Bank who earn more than $50,000.

(EL) Tpname (J(cnwmez"{?ity Bank')A(salary>50000) (’LUOT k“i))

3. Find the name and city of all persons who work for City Bank and earn more than 50,000.
Similar to previous query, except we have to access the lives table to extract the city of the
employee . Note the join condition in the query.

(EL) Tlives.pname,lives.city (J((ename='Clity Bank")\(salary>50000)A(lives.pname=works.pname))) (l?;’UBS X ’.{UOT}'CS)

Find names of all persons who do not work for City Bank. Can write this in multiple ways
- one solution is to use set difference:

(EL) (ﬂ—pnwm.e ('LUDTkS)) - (anarne (Jcﬂarnezf(]ity Bank' (ﬂFO?"k“S)))

6. Find the name of all persons who work for City Bank and live in DC. Similar to query 3,
but select only with tuples where person city is DC.

(EL) Tlives.pname (J((ecname='C'ity Bank’)A(lives.city="DC’)A(lives.pname=works.pname))) (li‘:‘UES X ’UJD?"kS)

Example

* Find the ID of the loan with the largest amount.

* Hard to find the loan with the largest amount! (At least, with the tools we have so far...)
* Much easier to find all loans that have an amount smaller than some other loan

* Then, use set-difference to find the largest loan

loan_id | branch_name | amount
L-421 San Francisco | 7500
L-445 Los Angeles 2000
L-437 Las Vegas 4300
L-419 Seattle 2900

How to find all loans with an amount smaller than
some other loan?

Use Cartesian Product of loan with itself:
loan X loan

Compare each loan’s amount to all other loans

Problem: Can’t distinguish between attributes of left
and right loan relations!

Solution: Use rename operation
loan X p,.4(loan)
Now, right relation is named fest

Find IDs of all loans with an amount smaller than
some other loan:

H.'oan.l'ocn_fd(UFoon.amounK fesf.cmounf(locn X pfesf(’oon)))

Finally, we can get our result:

loan_id
L-421

l_lfocm_id(Iocm) -

Iocm X pfesr(locn)))

nfoon.foon_id(O/oan.amount< fesr.omounf(

loan_id | branch_name | amount loan_id | branch_name | amount
L-421 San Francisco | 7500 L-421 San Francisco | 7500
L-445 Los Angeles 2000 L-445 Los Angeles 2000
L-437 Las Vegas 4300 L-437 Las Vegas 4300
L-419 Seattle 2900 L-419 Seattle 2900
loan_id | branch_name | amount || loan_id | branch_name | amount
L-421 San Francisco | 7500 | L-421 San Francisco | 7500
L-421 San Francisco | 7500 L-445 Los Angeles 2000
L-421 San Francisco | 7500 | L-437 Las Vegas 4300
L-421 San Francisco | 7500 L-419 Seattle 2900

r" L-445 Los Angeles 2000 L-421 San Francisco | 7500
L-445 | LosAngeles | 2000 L-445 | Los Angeles | 2000
L-445 | LosAngeles | 2000 L-437 | Las Vegas 4300
L-445 | LosAngeles | 2000 L-419 | Seattle 2900

Aggregation operators (summarize)

* Many operators we can apply to set or bags of numbers or strings.
* They are used to summarize or aggregate the values in one column of relation

For example:

SUM

* AVG

MIN and MAX (numerical values and character-string values)

COUNT | e

969687423

To retrieve the number of person and their salary E—

888548623

Count(ISBN) R AVERAGE(SALARY) R

Chapter 3

Design Theory for
Relational Databases

Chapter 3

* We can examine the requirements for a database and define relations
directly, without going through a high-level intermediate stage.

* In this chapter:
 |dentify the problems that are caused in some relation schemas
* Normalization

Functional Dependencies

Determinant X—=y Dependend
Y is determined by x X=2 y=?

X=2 y=7

In the first relation, If | tell you the value of X
you can find the value of Y

X=2 vy=?

So, based on relation we can find the FD.

X and Y can be a set of attributes.

w U1 N

N U1 N

10

Functional Dependencies

* If two tuples of R agree on all the attributes A1,A2,A3, ..., An then they must also
agree on all of another list of attributes B1,B2,...,.Bm.

* We write this FD formally as A1A2...An = B1B2... Bm and say that
“A1,A2,....,An functionally determine B1,B2,...,.Bm”

If one set of attributes in a table determines :H_ A'sH= Bs
another set of attributes in the table, then,
the second set of attributes is said to be
functionally dependent on the first set of

attributes.

e Bl R Y

u

Ifr and Then they
u agree must agree
here. here

Examples

ISBN

0-321-32132-1

0-55-123456-9

0-123-45678-0

1-22-233700-0

Title

Balloon

Main Street

Ulysses

Visual
Basic

Price

$34.00

$22.95

$34.00

$25.00

Table Scheme: {ISBN, Title, Price}
Functional Dependencies: {ISBN} - {Title}
{ISBN} - {Price}

Example: “no two courses can meet in the same room at the same time”

tells us: hour, room -> course

12

Example2

title year | length | genre | studioName | starName
Star Wars 1977 | 124 SciFi Fox Carrie Fisher
Star Wars 1977 | 124 SciFi Fox Mark Hamill
Star VWars 1977 | 124 SciFi Fox Harrison Ford
Gone With the Wind | 1939 | 231 drama MGM Vivien Leigh
Wayne’s World 1992 | 95 comedy | Paramount Dana Carvey
Wayne’s World 1992 | 95 comedy | Paramount Mike Mayers

Figure 3.2: An instance of the relation Moviesi(title, year, length,

genre, studioName, starName)

As we shall see, the schema for MOVIES1 is not a good design.

Title , year = length, genre, StudioName

Thus, we expect that given
a title and year, there is a
unique movie.

® Title, year—> starName

This FD says that two tuples have the same value in their TITLE and Year components, the these

two tuples must also have

* the same values in their Length component,
* the same values in their genre components,
* the same values in their studioName components

13

Functional Dependencies

* FD says something about all possible instances of the relation, not
about one of its instances.

x|y

X>Y 1 6 Only we need to find tuples
IF tuple(i).x=tuple(j).x then 2 7 V‘;\'th I:Wr? e“?U3| value, then
tuple(i).y=tuple(j).y i = check the IF statement
If y for both of them is same
3 22 .
so x->y is FD.
x|y
1 6
1 ©
1 6
2 22 14

Keys of Relations

* We say a set of one or more attributes {A1,A2,A3,...An} is a key for a relation R if:

1. Those attributes functionally determine all other attributes of a relation .
It is impossible for two distinc tuples of R to agree on all A1,A2,A2,....,An

2. No proper subset of {A1,A2,A3,...An} functionally determines all other
attributes of R;

a key must be minimal.

it f K title | year | length | genre | studioName | starName
-{tlt €, year, Starname} orm a key Star Wars 1977 | 124 SciFi Fox Carrie Fisher
1- two different tuples can not agree on all of title, year Star Wars 1977 | 124 | SciFi | Fox Mark Hamill
d st Star Wars 1977 | 124 SciFi Fox Harrison Ford
and starname Cone With the Wind | 1939 | 231 | drama | MCM Vivien Leigh
2-no proper subset of it functionally determines all Wayne’s World 1992 | 96 comedy | Paramount | Dana Carvey
Wayne’s World 1992 | 95 comedy | Paramount Mike Mayers

other attributes ({title , year}is not a key)

Figure 3.2: An instance of the relation Moviesi(title, year, length,

Sometimes a relation has more than one key. .
genre, studioName, starName)

15

What Is “Functional” About Functional
Dependencies?

A1As--- A, = B is called a “functional” dependency because in principle
there is a function that vakes a list of values, one for each of attributes
A;,Az,..., A, and produces a unique value (or no value at all) for B.
For instance, in the Movies1 relation, we can imagine a function that
takes a string like "Star Wars" and an integer like 1977 and produces the
unique value of length, namely 124, that appears in the 1elation Movies1.
However, this function is not the usual sort of function that we meet in
mathematics, because there is no way to compute it from first principles.
That is, we cannot perform some operations on strings like "Star Wars"
and integers like 1977 and come up with the correct length. Rather, the
function is only computed by lookup in the relation. We look for a tuple
with the given title and year values and see what value that tuple has
for length.

SuperkKey

A set of attributes that contain a key is called superkey.
Every superkey satisfies the first condition of a key.
Thus every key is a superkey.

However, some superkeys are not (minimal)keys.

* A superkey need not satisfy the second condition :minimality.

Example 3.3: In the relation of Example 3.2, there are many superkeys. Not
only is the key

{title, year, starName}
a superkey, but any superset of this set of attributes, such as
{title, year, starName, length, studioName}

is a superkey. O

Maximum number of
super key: 2N-1

17

Example3

! Exercise 3.1.3: Suppose R is a relation with attributes A;, 4,,... , 4,. Asa
function of n, tell how many superkeys R has, if:

a) The only key is A4;.
b)
c) The only keys are {A;, A2} and {43, A4}
d) The only keys are {A4;, A2} and {4, 43).

The only keys are A, and A,.

In general, if we have ‘N’ attributes with one candidate key then the number of possible superkeys is 2(N-1),

Let a Relation R have attributes {al, a2, a3,..., an} and the candidate keys are “al a2”, “a3 a4” then the possible
number of super keys?

Super keys of(al a2) + Super keys of(a3 a4) — Super keys of(al a2 a3 a4)

= 2(N=2) £ 2(N-2) _ 2(N-4)

Let a Relation R have attributes {al, a2, a3,..., an} and the candidate keys are “al a2”, “al a3” then the possible number of
Super keys of (al a2) + Super keys of (al a3) — Super keys of(al a2 a3)
= 2MN-2) + 2A(N-2) - 2~(N - 3)

18

Example

How many possible superkeys do we have in this example?
- {A}is a super key. (the values are not repeated)

- So, {A,B}is superkey, since A is a superkey.

- {A,C}, {A,D},{A,B,C},{A,C,D},{A,B,D},{A,B,C,D}

- Order does not matter

- Is {B}is a super key? No {C}No {D}No

- {B,C,D} No. So subset of {B,C,D} can not be a superkey

- Answer is 8

19

Candidate Key

* |s a superkey whose proper subset is not a superkey. (minimal super key)

SK= {A} {A B} {A C} {A B,C} A | B | C
{B} OR {C} NO
SK={B,C}

SK= {A},{A,B},{A,C},{A,B,C}, {B,C}
proper subset :
Suppose X1={1,2,3} and X2={1,2}

X2 i§ subset of x1 if every member of X2 must be member of X1 So every CK is a SK
X2 is proper subset of x1

First x2 is subset of x1 But every SK is not a CK
But x1 is not subset of x2
{A,B,C} : WHOSE proper subset are {A,B}, {B,C},{A,C},{A}, {B}, {C} CK=NO SOME ARE SUPERKEYS

{A,C}: WHOSE proper subset are {A},{C} CK=NO SOME ARE SUPERKEYS
{A}: CK=YES {B,C}: WHOSE proper subset are{B},{C} none of its proper subset is sk CK=YES 20

A W B
R = O O
v W Uu1 W

Rules about Functional Dependencies

* The ability to discover additional FD ‘s is essential when we discuss
the design of good relation schemas

1- Reasoning about Functional Dependencies

Example 3.4: If we are told that a relation R(A, B,C) satisfies the FD’s
A — Band B =5 C, then we can deduce that R also satisfies the FD 4 — C.
How does that reasoning go? To prove that 4 — €, we must consider two
tuples of R that agree on A and prove they also agree on C.

2- The splitting/combining rule

We can replace an FD A4, --- 4, = B1By--- B, by a set of FD’s _

AyAq--- A, = B; fori = 1,2,... ,m. This transformation we call the title year » gence.

Sphttiﬂg ‘!‘R!E. title year —+ studioName
is equivalent to the single FD:

We can replace a set of FD's 41 A;--- A, = B;fori=1,2,...,m by the title year — length genre studioName
single FD 4,45 ---4, = B1Bs---B,,. We call this transformation the that we asserted there. ©

combining rule.

Example 3.5: In Example 3.1 the set of FD’s:

21

 However, there is no splitting rule for left sides

Example 3.6: Consider one of the FD’s such as:
title year — length
for the relation Movies1 in Example 3.1. If we try to split the left side into

title — length
year — length

then we get two false FD’s. That is, title does not functionally determine
length, since there can be several movies with the same title (e.g., King Kong)
but of different lengths. Similarly, year does not functionally determine length,

because there are certainly movies of different lengths made in any one year.
O

22

Derivation rules

* X, Y, Z are subsets of U

* Reflexivity
e f XcYcUthenY-->X

* Augmentation
e if X-->Y and Zc U then X,Z -->Y,Z
Transitivity
e ifX->YandY-->ZthenX-->Z7
* Pseudo - transitivity
e ifX-->Yand YW -->Zthen X,W -->7Z
* Union
e fX->YandX-->ZthenX-->Y,Z

* Decomposition
e ifX->YandZC Y thenX->7Z

23

Anomalies

* Problems such as redundancy that occur when we try to cram too
much into a single relation are called anomalies:

1. Redundancy

* Information may be repeated unnecessarily in several tuples.

2. Update anomalies

 We may change information in one tuple but leave the same information
unchanged in another.

3. Deletion anomalies

* |f a set of values becomes empty, we may lose other information as a side
effect.

Examples

title | year | length | genre | studioName | starName

Star Vars 1977 | 124 SciFi Fox Carrie Fisher

Star Wars 1977 | 124 SciFi Fox Mark Hamill

Star Wars 1977 | 124 SciFi Fox Harrison Ford Redundancy
Gone With the Wind | 1939 | 231 drama MGM Vivien Leigh

Wayne's World 1992 | 95 comedy | Paramount Dana Carvey

Wayne’s World 1992 | 95 comedy | Paramount Mike Mayers

Figure 3.2: An instance of the relation Moviesi(title, year, length,
genre, studioName, starName)

* Update anomaly: If we found that star wars is really 125 minutes long, we might
carelessly change the length in the first tuples but not in the second and third
tuples.

Normalization Algorithms

| evels of Normalization

 Levels of normalization based on the amount of redundancy in

the database.
* First Normal Form (1NF)
e Second Normal Form (2NF)

* Third Normal Form (3NF) E?g\?e:]iigr;er
* Boyce-Codd Normal Form (BCNF) subset of the
* Fourth Normal Form (4NF) lower level

Fifth Normal Form (5NF)
e Domain Key Normal Form (DKNF)

[Most databases should be 3NF or BCNF in order to avoid the database anomalies.]

27

First normal form

* A relation schema is in first normal form (1 NF) if any attribute has an
atomic value.

e 1:Atomic value : It cannot be decomposed into two or more component

-Create separate column for each member of composite attribute Flalbl TLT2 It is not
-Make two or more different tuples for each multi-value attributes . atomic
- Define Fk 2 X2 F1,a2,b5 T5

3 X3 F2,a3,b4 T6,T3

- 2:In first normal form : A column should contain values for the same domain.

- 3:Each column should have unique name

- 4: NO ordering, No duplicate rows
28

Closure of a set of FDs (F*)

* The closure of F, said F*, is the set of all FD that can be derived from F
* Using attributes closure can help to answer, it is a candidate key or not
* Then by finding a candidate key we can solve the 2NF, 3NF,

R(A,B,C,D,E,F) FD={A->B , B->C, C->D, D->E}
We can use rules and find more FD

A->B,B->C = A->C X is a set of attribute

A->A (Reflexivity) X* contains set of attributes determined by X
A->C, C->D =» A->D

A->D, D->E = A->E A*={A,B,C,D,E}

A->ABCDE (splitting/merge) :>

29

=)

R(A,B,C,D,E) FD={A->B , B->C, C->D, D->E}

AD*=?

AD->A

AD->D

A->B = AD->BD

AD->BD = AD->B, AD->D
AD->B, B->C =» AD->C
AD*={A,B,D,C,E}

CD*

{C,D, ...}
D->E
CD*={C,D, E}
B*={B,C,D,E}

[

Superkey
Set of attributes whose closure contains all
attributes of a given relation

A+ and AD+ are SK

30

